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Preface

The last thing one discovers in writing a book
is what to put first.

—Blaise Pascal (1623–1662)

This book is written for the prospective computer scientist, computer engineer, or applied mathematician who
wants to learn the ideas that underlie computer science. The topics come from the fields of mathematics,
logic, and computer science itself. I have attempted to give elementary introductions to those ideas and
techniques that are necessary to understand and practice the art and science of computing. This fourth edition
of the book contains all the topics for discrete structures listed in Computer Science Curricula 2013 by the
ACM/IEEE Joint Task Force on Computing Curricula.

Structure and Method
The structure of the fourth edition continues to support the spiral (i.e., iterative or nonlinear) method for
learning. The spiral method is a “just in time” approach. In other words, start by introducing just enough basic
information about a topic so that students can do something with it. Then revisit the topic whenever new skills
or knowledge about the topic are needed for students to solve problems in other topics that have been
introduced in the same way. The process continues as much as possible for each topic.

Topics that are revisited with the spiral approach include logic, sets, relations, graphs, counting, number
theory, cryptology, algorithm analysis, complexity, algebra, languages, and machines. Therefore, many
traditional topics are dispersed throughout the text to places where they fit naturally with the techniques under
discussion.

The coverage of logic is much more extensive than in other current books at this level. Logic is of
fundamental importance in computer science—not only for its use in problem solving, but also for its use in
formal specification of programs, for its formal verification of programs, and for its growing use in areas such
as databases, artificial intelligence, robotics, and automatic reasoning systems. Logic is covered in a spiral
manner. For example, informal proof techniques are introduced in the first section of Chapter 1. Then we use
informal logic without much comment until Chapter 4, where inductive proof techniques are presented. After
the informal use of logic is well in hand, we move to the formal aspects of logic in Chapters 6 and 7, where
equivalence proofs and rule-based proofs are introduced. Formal logic is applied to proving correctness
properties of programs in Chapter 8, where we also introduce higher forms of logic and automatic reasoning.

The coverage of algebraic structures differs from that in other texts. In Chapter 9 we give elementary
introductions to algebras and algebraic techniques that apply directly to computer science. In addition to the
traditional topic of Boolean algebra, we introduce congruences with applications to cryptology, abstract data
types, relational algebra for relational databases, functional algebra for reasoning about programs, and
morphisms. In Chapter 11 we introduce the algebra of regular expressions for simplifying representations of
regular languages.

The computing topics of languages, automata, and computation are introduced in Chapters 11 and 12. The



last section of the book gives an elementary introduction to computational complexity.

Changes for the Fourth Edition
♦ Every section of the book now contains learning objectives and review questions. There are over 350

review questions in the book.
♦ The first section of the book on informal proof (“A Proof Primer”) has been expanded to provide a wider

range of proof techniques, along with simple examples of informal proofs that use the techniques.
♦ A new chapter on graphs has been added (Chapter 10). It expands on the introductory material contained

in the first chapter.
♦ Two new topics, conditional independence and elementary statistics, have been added to Section 5.4 on

discrete probability.
♦ The coverage of logic programming has been reduced, but it is still introduced as an application of

resolution in Section 8.3. The coverage of parsing algorithms has been dropped.
♦ Over 125 examples with named headings have been added. There are now more than 550 such headings

that contain over 650 individual examples. In addition to the examples that occur under named headings,
the book now has more than 1000 examples that occur within the prose, most of which are introduced by
the phrase “For example.”

♦ More than 300 new exercises have been added so that the book now contains over 2250 exercises.
Answers are provided for about half of the exercises; these exercises are identified with bold numbers.

I hope that this edition has no errors. But I do wish to apologize in advance for any errors found in the book. I
would appreciate hearing about them. As always, we should read the printed word with some skepticism.

Note to the Student
Most problems in computer science involve one of the following five questions:

♦ Can the problem be solved by a computer program?
♦ If not, can you modify the problem so that it can be solved by a program?
♦ If so, can you write a program to solve the problem?
♦ Can you convince another person that your program is correct?
♦ Can you convince another person that your program is efficient?

One goal of the book is that you obtain a better understanding of these questions, together with a better
ability to answer them. The book’s ultimate goal is that you gain self-reliance and confidence in your own
ability to solve problems, just like the self-reliance and confidence you have in your ability to ride a bike.

Instructor and Student Resources
The companion website for the book, go.jblearning.com/Hein4e, contains additional information for the
instructor, including an Instructor’s Solutions Manual, slides in PowerPoint format, and Sample Exam
Questions. For the student, each new copy of the textbook is equipped with an access code for the

http://go.jblearning.com


accompanying Companion Website. The Companion Website provides access to a Student Study Guide and a
Lab Book of experiments that use a free open-source mathematics software system.

Using the Book
The book can be read by anyone with a good background in high school mathematics. So it could be used at
the freshman level or at the advanced high school level. As with most books, there are some dependencies
among the topics. But you should feel free to jump into the book at whatever topic suits your fancy and then
refer back to unfamiliar definitions if necessary. We should note that some approximation methods in Chapter
5 rely on elementary calculus, but the details can be skipped over without losing the main points.

Acknowledgments
Many people have influenced the content and form of the book. Thanks go especially to the students and
teachers who have kept me busy with questions, suggestions, and criticisms. A special thanks to Professor
Yasushi Kambayashi for his suggestions and for his work on the Japanese version of the book.

J.L.H.



chapter 1
Elementary Notions and Notations

‘Excellent!’ I cried. ‘Elementary,’ said he.
—Watson in The Crooked Man

by Arthur Conan Doyle (1859–1930)

To communicate, we sometimes need to agree on the meaning of certain terms. If the same idea is mentioned
several times in a discussion, we often replace it with some shorthand notation. The choice of notation can
help us avoid wordiness and ambiguity, and it can help us achieve conciseness and clarity in our written and
oral expression.

Since much of our communication involves reasoning about things, we’ll begin this chapter with a
discussion about the notions of informal proof. The rest of the chapter is devoted to introducing the basic
notions and notations for sets, ordered structures, graphs, and trees. The treatment here is introductory in
nature, and we’ll expand on these ideas in later chapters as the need arises.

1.1 A Proof Primer

For our purposes an informal proof is a demonstration that some statement is true. We normally
communicate an informal proof in an English-like language that mixes everyday English with symbols that
appear in the statement to be proved. In the following paragraphs we’ll discuss some basic techniques for
doing informal proofs. These techniques will come in handy in trying to understand someone’s proof or in
trying to construct a proof of your own, so keep them in your mental toolkit.

We’ll start off with a short refresher on logical statements followed by a short discussion about numbers.
This will give us something to talk about when we look at examples of informal proof techniques.

Figure 1.1.1 T ruth table.

Statements and Truth Tables
For this primer we’ll consider only statements that are either true or false. To indicate that a statement is true
(i.e., it is a truth), we assign it the truth value T (or True). Similarly, to indicate that a statement is false (i.e.,



it is a falsity) we assign it the truth value F (or False). We’ll start by discussing some familiar ways to
structure such statements.

Negation
If S represents some statement, then the negation of S is the statement “not S,” whose truth value is opposite
that of S. We can represent this relationship with a truth table in which each row gives a possible truth value
for S and the corresponding truth value for not S. The truth table for negation is given in Figure 1.1.1.

We often paraphrase the negation of a statement to make it more understandable. For example, to negate
the statement “Earth is a star,” we normally say, “Earth is not a star,” or “It is not the case that Earth is a
star,” rather than “Not Earth is a star.”

We should also observe that negation relates statements about every case with statements about some
case. For example, the statement “Not every planet has a moon” has the same meaning as “Some planet does
not have a moon.” Similarly, the statement “It is not the case that some planet is a star” has the same
meaning as “Every planet is not a star.”

Conjunction and Disjunction

The conjunction of A and B is the statement “A and B,” which is true when both A and B are true. The
disjunction of A and B is the statement “A or B,” which is true if either or both of A and B are true. The truth
tables for conjunction and disjunction are given in Figure 1.1.2.

Figure 1.1.2 T ruth tables.



Figure 1.1.3 T ruth table.

Sometimes we paraphrase conjunctions and disjunctions. For example, instead of “Earth is a planet and
Mars is a planet,” we might write “Earth and Mars are planets.” Instead of “x is positive or y is positive,” we
might write “Either x or y is positive.”

Conditional Statements
Many statements are written in the general form “If A then B,” where A and B are also statements. Such a
statement is called a conditional statement in which A is the antecedent and B is the consequent. The
statement can also be read as “A implies B.” Sometimes, but not often, it is read as “A is a sufficient
condition for B,” or “B is a necessary condition for A.” The truth table for a conditional statement is
contained in Figure 1.1.3.

Let’s make a few comments about this table. Notice that the conditional is false only when the antecedent
is true and the consequent is false. It’s true in the other three cases. The conditional truth table gives some
people fits because they interpret “If A then B” to mean “B can be proved from A,” which assumes that A
and B are related in some way. But we’ve all heard statements like “If the moon is made of green cheese,
then 1 = 2.” We nod our heads and agree that the statement is true, even though there is no relationship
between the antecedent and consequent. Similarly, we shake our heads and don’t agree with a statement like
“If 1 = 1, then the moon is made of green cheese.”

When the antecedent of a conditional is false, we say that the conditional is vacuously true. For example,
the statement “If 1 = 2, then 39 = 12” is vacuously true because the antecedent is false. If the consequent is
true, we say that the conditional is trivially true. For example, the statement “If 1 = 2, then 2 + 2 = 4” is
trivially true because the consequent is true. We leave it to the reader to convince at least one person that the
conditional truth table is defined properly.

The converse of “If A then B” is “If B then A” The converse of a statement does not always have the
same truth value. For example, suppose x represents some living thing; then the following statement is true:
“If x is an ant, then x has six legs.” The converse of the statement is “If x has six legs, then x is an ant.” This
statement is false because, for example, bees have six legs.

Equivalent Statements



Sometimes it’s convenient to write a statement in a different form but with the same truth value. Two
statements are said to be equivalent if they have the same truth value for any assignment of truth values to
the variables that occur in the statements.

We can combine negation with either conjunction or disjunction to obtain the following pairs of equivalent
statements.

“not (A and B)” is equivalent to “(not A) or (not B).”

“not (A or B)” is equivalent to “(not A) and (not B).”

For example, the statement “not (x > 0 and y > 0)” is equivalent to the statement “x ≤ 0 or y ≤ 0.” The
statement “not (x > 0 or y > 0)” is equivalent to the statement “x ≤ 0 and y ≤ 0.”

Conjunctions and disjunctions distribute over each other in the following sense:

“A and (B or C)” is equivalent to “(A and B) or (A and C).”
“A or (B and C)” is equivalent to “(A or B) and (A or C).”

For example, the following two statements are equivalent:

“I ate an apple and (I ate cake or I ate ice cream).”
“(I ate an apple and I ate cake) or (I ate an apple and I ate ice cream).”

The following two statements are also equivalent:

“I ate an apple or (I ate cake and I ate ice cream).”
“(I ate an apple or I ate a cake) and (I ate an apple or I ate ice cream).”

Equivalences Involving Conditionals

The contrapositive of “If A then B” is the equivalent statement “If not B then not A.” For example, the
following two statements are equivalent:

“If x is an ant, then x has six legs.”

“If x does not have six legs, then x is not an ant.”

We can also express a conditional statement without using if-then. The statement “If A then B” is
equivalent to “(not A) or B.” For example, the following two statements are equivalent:

“If x is an ant, then x has six legs.”

“x is not an ant or x has six legs.”

Since we can express a conditional in terms of negation and disjunction, it follows that we can express the
negation of a conditional in terms of negation and conjunction. The statement “not (If A then B)” is equivalent
to “A and (not B).” For example, the following two statements are equivalent:



“It is not true that if Earth is a planet, then Earth is a star.”
“Earth is a planet and Earth is not a star.”

Let’s summarize the equivalences that we have discussed. Each row of the table in Figure 1.1.4 contains
two equivalent statements. In other words, the truth tables for each pair of statements are identical.

Figure 1.1.4 Equivalent statements.

Something to Talk About
To discuss proof techniques, we need something to talk about when giving sample proofs. Since numbers are
familiar to everyone, that’s what we’ll talk about. But to make sure that we all start on the same page, we’ll
review a little terminology.

The numbers that we’ll be discussing are called integers, and we can list them as follows:

... , −4, −3, −2, −1, 0, 1, 2, 3, 4, ... .

The integers in the following list are called even integers:

... , −4, −2, 0, 2, 4, ... .

The integers in the following list are called odd integers:

... , −3, −1, 1, 3, ... .



So every integer is either even or odd but not both. In fact, every even integer has the form 2n for some
integer n. Similarly, every odd integer has the form 2n + 1 for some integer n.

Divisibility and Prime Numbers
An integer d divides an integer n if d ≠ 0 and there is an integer k such that n = dk. For example, 3 divides
18 because we can write 18 = (3)(6). But 5 does not divide 18 because there is no integer k such that 18 =
5k. The following list shows all the divisors of 18.

−18, −9, −6, −3, −2, −1, 1, 2, 3, 6, 9, 18.

Some alternative words for d divides n are d is a divisor of n or n is divisible by d. We often denote the
fact that d divides n with the following shorthand notation:

d|n.

For example, we have −9|9, −3|9, −1|9, 1|9, 3|9, and 9|9. Here are two properties of divisibility that we’ll
record for future use.

Divisibility Properties (1.1.1)

a. If d|a and a|b, then d|b.

b. If d|a and d|b, then d|(ax + by) for any integers x and y.

An integer p > 1 is called a prime number if 1 and p are its only positive divisors. For example, the first
eight prime numbers are

2, 3, 5, 7, 11, 13, 17, 19.

Prime numbers have many important properties, and they have many applications in computer science. But
for now, all we need to know is the definition of prime.

Proof Techniques
Now that we have something to talk about, we’ll discuss some fundamental proof techniques and give some
sample proofs for each technique.

Proof by Exhaustive Checking
When a statement asserts that each of a finite number of things has a certain property, then we might be able
to prove the statement by exhaustive checking, where we check that each thing has the stated property.

Example 1 Exhaustive Checking

Suppose someone says, “If n is an integer and 2 ≤ n ≤ 7, then n2 + 2 is not divisible by 4.” For 2 ≤ n ≤ 7, the
corresponding values of n2 + 2 are



6, 11, 18, 27, 38, 51.

We can check that these numbers are not divisible by 4. For another example, suppose someone says, “If n is
an integer and 2 ≤ n ≤ 500, then n2 + 2 is not divisible by 4.” Again, this statement can be proved by
exhaustive checking, but perhaps by a computer rather than by a person.

Exhaustive checking cannot be used to prove a statement that requires infinitely many things to check. For
example, consider the statement, “If n is an integer, then n2 + 2 is not divisible by 4.” This statement is true,
but there are infinitely many things to check. So another proof technique will be required. We’ll get to it after
a few more paragraphs.

An example that proves a statement false is often called a counterexample. Sometimes counterexamples
can be found by exhaustive checking. For example, consider the statement, “Every odd number greater than 1
that is not prime has the form 2 + p for some prime p.” We can observe that the statement is false because
27 is a counterexample.

Conditional Proof
Many statements that we wish to prove are in conditional form or can be rephrased in conditional form. The
direct approach to proving a conditional of the form “if A then B” starts with the assumption that the
antecedent A is true. The next step is to find a statement that is implied by the assumption or known facts.
Each step proceeds in this fashion to find a statement that is implied by any of the previous statements or
known facts. The conditional proof ends when the consequent B is reached.

Example 2 An Even Sum
We’ll prove that the sum of any two odd integers is an even integer. We can rephrase the statement in the
following conditional form:

If x and y are odd, then x + y is even.

Proof: Assume that x and y are odd integers. It follows that x and y can be written in the form x = 2k + 1 and
y = 2m + 1 for some integers k and m. Now, substitute for x and y in the sum x + y to obtain

x + y = (2k + 1) + (2m + 1) = 2k + 2m + 2 = 2(k + m + 1).

Since the expression on the right-hand side contains 2 as a factor, it represents an even integer. QED.

Example 3 An Even Product
We’ll prove the following statement about integers:

If x is even, then xy is even for any integer y.

Proof: Assume that x is even. Then x = 2k for some integer k. If y is any integer, then we can write xy =
(2k)y = 2(ky), which is the expression for an even integer. QED.



Example 4 A Proof with Two Cases
We’ll prove the following statement about integers:

If y is odd, then x(x + y) is even for any integer x.

Proof: Assume that y is odd. Let x be an arbitrary integer. Since x is either even or odd, we’ll split the proof
into two cases. Case 1: If x is even, then the product x(x + y) is even by Example 3. Case 2: If x is odd, then
the sum x + y is even by Example 2. It follows that the product x(x + y) is even by Example 3. So, in either
case, x(x + y) is even. Therefore, the statement is true. QED.

Example 5 A Divisibility Proof
We’ll prove the following statement about divisibility of integers:

If x|(x + l)y, then x|y.

Proof: Assume that x|(x + 1)y. Then (x + 1)y = xk for some integer k. The equation can be written as xy + y
= xk. Subtract xy from both sides to obtain

y = xk − xy = x(k − y).

This equation tells us that x|y. QED.

Example 6 A Disjunctive Antecedent
Suppose we want to prove the following statement about integers:

If x is even or y is odd, then x + xy is even.

How do we handle the disjunction in the antecedent? We can observe the following equivalence by checking
truth tables:

“If (A or B) then C” is equivalent to “(If A then C) and (If B then C).”

The statement can be proved by proving the two statements “If A then C” and “If B then C.” So we’ll prove
the following two statements:

If x is even, then x + xy is even.

If y is odd, then x + xy is even.

Proof: Assume that x is even. Then x = 2k for some integer k. It follows that

x + xy = 2k + 2ky = 2(k + ky).

This equation tells us that x + xy is even. Next, assume that y is odd. Then y = 2k + 1 for some integer k. It
follows that



x + xy = x + x(2k + 1) = x + 2kx + x = 2(x + 2k).

This equation tells us that x + xy is even. QED.

Example 7 Proving a Contrapositive
Suppose we want to prove the following statement about the integers:

If xy is odd, then x is odd and y is odd.

If we assume that xy is odd, then we can write xy = 2k + 1 for some integer k. This information doesn’t seem
all that helpful in moving us to the conclusion. Let’s consider another way to prove the statement.

Recall that a conditional statement “if A then B” and its contrapositive “if not B then not A” are equivalent.
So, a proof of one is also a proof of the other. Sometimes the contrapositive is easier to prove, and this
example is such a case. We’ll prove the following contrapositive form of the statement:

If x is even or y is even, then xy is even.

Proof: Because the antecedent is a disjunction, it follows from Example 6 that we need two proofs. First,
assume that x is even. Then we can use the result of Example 3 to conclude that xy is even. Next, assume
that y is even. Again, by Example 3, we can conclude that xy (= yx) is even. Therefore, the given statement is
true. QED.

Example 8 A Disjunction
Suppose we want to prove the following statement about integers:

2 | 3x or x is odd.

It’s always nice to start a proof with an assumption. But what can we assume? We can observe the following
equivalence by checking truth tables:

“A or B” is equivalent to “If (not A) then B.”

So it suffices to prove “If (not A) then B.” In other words, assume that A is false and give an argument
showing that B is true. So, we’ll prove the following statement:

If 2 does not divide 3x, then x is odd.

Proof: Assume that 2 does not divide 3x. Then 3x ≠ 2k for every integer k. This says that 3x is not even.
Therefore, 3x is odd, and it follows from Example 7 that x is odd. QED.
Note: Since “A or B” is equivalent to “B or A,” we could also prove the statement by assuming that B is false
and giving an argument that A is true. It’s nice to have a choice, since one proof might be easier. We’ll prove
the following alternative statement:

If x is even, then 2 | 3x.




